Cognitive Development in Middle Childhood

What you’ll learn to do: explain changes and advances in cognitive development during middle childhood

A boy shown deep in thought

Children in middle childhood are beginning a new experience—that of formal education. In the United States, formal education begins at a time when children are beginning to think in new and more sophisticated ways. According to Piaget, the child is entering a new stage of cognitive development where they are improving their logical skills. During middle childhood, children also make improvements in short term and long term memory.

Learning Outcomes

  • Describe key characteristics of Piaget’s concrete operational intelligence
  • Explain the information processing theory of memory
  • Describe changes to cognitive function in middle childhood
  • Describe language development in middle childhood

Concrete Operational Thought

Iraqi girl in headscarf sits with a laptop.
Figure 1. This child is likely in the concrete operational stage of cognitive development.

According to Piaget, children in early childhood are in the preoperational stage of development in which they learn to think symbolically about the world. From ages 7 to 11, the school-aged child continues to develop in what Piaget referred to as the concrete operational stage of cognitive development. This involves mastering the use of logic in concrete ways. The child can use logic to solve problems tied to their own direct experience but has trouble solving hypothetical problems or considering more abstract problems. The child uses inductive reasoning, which means thinking that the world reflects one’s own personal experience. For example, a child has one friend who is rude, another friend who is also rude, and the same is true for a third friend. Using inductive reasoning, the child may conclude that friends are rude. (We will see that this way of thinking tends to change during adolescence as children begin to use deductive reasoning effectively.)

The word concrete refers to that which is tangible; that which can be seen or touched or experienced directly. The concrete operational child is able to make use of logical principles in solving problems involving the physical world. For example, the child can understand the principles of cause and effect, size, and distance.

As children’s experiences and vocabularies grow, they build schema and are able to classify objects in many different ways. Classification can include new ways of arranging information, categorizing information, or creating classes of information. Many psychological theorists, including Piaget, believe that classification involves a hierarchical structure, such that information is organized from very broad categories to very specific items.

One feature of concrete operational thought is the understanding that objects have an identity or qualities that do not change even if the object is altered in some way. For instance, the mass of an object does not change by rearranging it. A piece of chalk is still chalk even when the piece is broken in two.

During middle childhood, children also understand the concept of reversibility, or that some things that have been changed can be returned to their original state. Water can be frozen and then thawed to become liquid again. But eggs cannot be unscrambled. Arithmetic operations are reversible as well: 2 + 3 = 5 and 5 – 3 = 2. Many of these cognitive skills are incorporated into the school’s curriculum through mathematical problems and in worksheets about which situations are reversible or irreversible. (If you have access to children’s school papers, look for examples of these.)

Remember the example from the earlier module of children thinking that a tall beaker filled with 8 ounces of water was “more” than a short, wide bowl filled with 8 ounces of water? Concrete operational children can understand the concept of reciprocity which means that changing one quality (in this example, height or water level) can be compensated for by changes in another quality (width). So there is the same amount of water in each container although one is taller and narrower and the other is shorter and wider.

These new cognitive skills increase the child’s understanding of the physical world. Operational or logical thought about the abstract world comes later.

Information Processing Theory

Information processing theory is a classic theory of memory that compares the way in which the mind works to computer storing, processing and retrieving information. According to the theory, there are three levels of memory:

1) Sensory memory: Information first enters our sensory memory (sometimes called sensory register). Sensations are continuously coming into our brains, and are lost after a few seconds because they were immediately filtered out as irrelevant. If the information is not perceived or stored, it is discarded quickly.

2) Working memory (short-term memory): If information is meaningful (either because it reminds us of something else or because we must remember it for something like a history test we will be taking in 5 minutes), it moves from sensory memory into our working memory. The process by which this happens is not entirely clear. Working memory consists of information that we are immediately and consciously aware of. All of the things on your mind at this moment are part of your working memory. The amount of information kept in working memory is limited; for most people, this is somewhere around 7 + or – 2 pieces or chunks of information. If you are given too much information at a time, you may lose some of it.

Rehearsal can help you maintain information in your working memory, but the process by which information moves from working memory into long term memory seems to rely on more than simple rehearsal. Information in our working memory must be stored in an effective way in order to be accessible to us for later use. It is stored in our long-term memory or knowledge base.

3) Long-term memory (knowledge base): This level of memory has an unlimited capacity and stores information for days, months or years. It consists of things that we know of or can remember if asked. The important thing to remember about storage is that it must be done in a meaningful or effective way. In other words, if you simply try to repeat something several times in order to remember it, you may only be able to remember the sound of the word rather than the meaning of the concept. So if you are asked to explain the meaning of the word or to apply a concept in some way, you will be lost. Studying involves organizing information in a meaningful way for later retrieval. Passively reading a text is usually inadequate and should be thought of as the first step in learning material. Writing keywords, thinking of examples to illustrate their meaning, and considering ways that concepts are related are all techniques helpful for organizing information for effective storage and later retrieval.

 

Changes in Cognitive Function

Children differ in their memory abilities, and these differences predict both their readiness for school and academic performance in school (PreBler, Krajewski, & Hasselhorn, 2013)[1]. During middle childhood children make strides in several areas of cognitive function including the capacity of working memory, their ability to pay attention, and their use of memory strategies. Both changes in the brain and experience foster these abilities.

Working Memory: The capacity of working memory expands during middle and late childhood, and research has suggested that both an increase in processing speed and the ability to inhibit irrelevant information from entering memory are contributing to the greater efficiency of working memory during this age (de Ribaupierre, 2002)[2]. Changes in myelination and synaptic pruning in the cortex are likely behind the increase in processing speed and ability to filter out irrelevant stimuli (Kail, McBride-Chang, Ferrer, Cho, & Shu, 2013)[3].

Children with learning disabilities in math and reading often have difficulties with working memory (Alloway, 2009)[4]. They may struggle with following the directions of an assignment. When a task calls for multiple steps, children with poor working memory may miss steps because they may lose track of where they are in the task. Adults working with such children may need to communicate: Using more familiar vocabulary, using shorter sentences, repeating task instructions more frequently, and breaking more complex tasks into smaller more manageable steps. Some studies have also shown that more intensive training of working memory strategies, such as chunking, aid in improving the capacity of working memory in children with poor working memory (Alloway, Bibile, & Lau, 2013)[5].

Attention: As noted above, the ability to inhibit irrelevant information improves during this age group, with there being a sharp improvement in selective attention from age six into adolescence (Vakil, Blachstein, Sheinman, & Greenstein, 2009)[6]. Children also improve in their ability to shift their attention between tasks or different features of a task (Carlson, Zelazo, & Faja, 2013). A younger child who is asked to sort objects into piles based on type of object, car versus animal, or color of object, red versus blue, may have difficulty if you switch from asking them to sort based on type to now having them sort based on color. This requires them to suppress the prior sorting rule. An older child has less difficulty making the switch, meaning there is greater flexibility in their attentional skills. These changes in attention and working memory contribute to children having more strategic approaches to challenging tasks.

Memory Strategies: Bjorklund (2005)[7] describes a developmental progression in the acquisition and use of memory strategies. Such strategies are often lacking in younger children but increase in frequency as children progress through elementary school. Examples of memory strategies include rehearsing information you wish to recall, visualizing and organizing information, creating rhymes, such “i” before “e” except after “c”, or inventing acronyms, such as “roygbiv” to remember the colors of the rainbow. Schneider, Kron-Sperl, and Hünnerkopf (2009)[8] reported a steady increase in the use of memory strategies from ages six to ten in their longitudinal study. Moreover, by age ten many children were using two or more memory strategies to help them recall information. Schneider and colleagues found that there were considerable individual differences at each age in the use of strategies, and that children who utilized more strategies had better memory performance than their same aged peers.

Knowledge Base: During middle childhood, children are able to learn and remember due to an improvement in the ways they attend to and store information. As children enter school and learn more about the world, they develop more categories for concepts and learn more efficient strategies for storing and retrieving information. One significant reason is that they continue to have more experiences on which to tie new information. In other words, their knowledge base, knowledge in particular areas that makes learning new information easier, expands (Berger, 2014)[9].

Metacognition: Children in middle childhood also have a better understanding of how well they are performing a task, and the level of difficulty of a task. As they become more realistic about their abilities, they can adapt studying strategies to meet those needs. Young children spend as much time on an unimportant aspect of a problem as they do on the main point, while older children start to learn to prioritize and gauge what is significant and what is not. As a result, they develop metacognition. Metacognition refers to the knowledge we have about our own thinking and our ability to use this awareness to regulate our own cognitive processes (Bruning, Schraw, Norby, & Ronning, 2004)[10].

Critical Thinking: According to Bruning et al. (2004) there is a debate in U.S. education as to whether schools should teach students what to think or how to think. Critical thinking, or a detailed examination of beliefs, courses of action, and evidence, involves teaching children how to think. The purpose of critical thinking is to evaluate information in ways that help us make informed decisions. Critical thinking involves better understanding a problem through gathering, evaluating, and selecting information, and also by considering many possible solutions. Ennis (1987)[11] identified several skills useful in critical thinking. These include: Analyzing arguments, clarifying information, judging the credibility of a source, making value judgements, and deciding on an action. Metacognition is essential to critical thinking because it allows us to reflect on the information as we make decisions.

 

Language Development

Vocabulary

One of the reasons that children can classify objects in so many ways is that they have acquired a vocabulary to do so. By 5th grade, a child’s vocabulary has grown to 40,000 words. It grows at the rate of 20 words per day, a rate that exceeds that of preschoolers. This language explosion, however, differs from that of preschoolers because it is facilitated by being able to associate new words with those already known (fast-mapping) and because it is accompanied by a more sophisticated understanding of the meanings of a word.

A child in middle childhood is also able to think of objects in less literal ways. For example, if asked for the first word that comes to mind when one hears the word “pizza”, the preschooler is likely to say “eat” or some word that describes what is done with a pizza. However, the school-aged child is more likely to place pizza in the appropriate category and say “food” or “carbohydrate”.

This sophistication of vocabulary is also evidenced in the fact that school-aged children are able to tell jokes and delight in doing do. They may use jokes that involve plays on words such as “knock-knock” jokes or jokes with punch lines. Preschoolers do not understand plays on words and rely on telling “jokes” that are literal or slapstick such as “A man fell down in the mud! Isn’t that funny?”

Grammar and Flexibility

School-aged children are also able to learn new rules of grammar with more flexibility. While preschoolers are likely to be reluctant to give up saying “I goed there”, school-aged children will learn this rather quickly along with other rules of grammar.

While the preschool years might be a good time to learn a second language (being able to understand and speak the language), the school years may be the best time to be taught a second language (the rules of grammar).

Glossary

classification: the arrangement of information into categories or classes

concrete operational stage of cognitive development: Piaget’s stage of development during middle childhood that emphasizes the use of logical thought, especially as applied to concrete, or physical objects

critical thinking: a detailed examination of beliefs, courses of action, and evidence

fast-mapping: a word learning process in which children are able to learn words quickly because they associate new words to words that they already know

identity: the understanding that objects have an identity or qualities that do not change even if the object is altered in some way

knowledge base: knowledge in particular areas that makes learning new information easier

long-term memory: the third component of the memory system where information is stored for long periods of time

metacognition: the knowledge we have about our own thinking and our ability to use this awareness to regulate our own cognitive processes

reciprocity: the understanding that changing one quality of an object can be compensated for by changes in another quality of that object

reversibility: the understanding that some things that have been changed can be returned to their original state

sensory memory: the first component of the memory system where information comes in through the 5 senses and is processed if the mind believes that the information is important

working memory: the second component of the memory system where information that has been processed in sensory memory goes. Working memory includes all the information that you are consciously aware of


  1. PreBler, A., Krajewski, K., & Hasselhorn, M. (2013). Working memory capacity in preschool children contributes to the acquisition of school relevant precursor skills. Learning and Individual Differences, 23, 138-144.
  2. de Ribaupierre, A. (2002). Working memory and attentional processes across the lifespan. In P. Graf & N. Ohta (Eds.), Lifespan of development of human memory (pp. 59-80). The MIT Press.
  3. Kail, R. V., McBride-Chang, C., Ferrer, E., Cho, J.R., & Shu, H. (2013). Cultural differences in the development of processing speed. Developmental Science, 16, 476-483.
  4. Alloway, T. P. (2009). Working memory, but not IQ, predicts subsequent learning in children with learning difficulties. European Journal of Psychological Assessment, 25, 92-98.
  5. Alloway, T. P., Bibile, V., & Lau, G. (2013). Computerized working memory training: Can lead to gains in cognitive skills in students? Computers in Human Behavior, 29, 632-638.
  6. Vakil, E., Blachstein, H., Sheinman, M., & Greenstein, Y. (2009). Developmental changes in attention tests norms: Implications for the structure of attention. Child Neuropsychology, 15, 21-39.
  7. Bjorklund, D. F. (2005). Children’s thinking: Developmental function and individual differences (4th ed.). Wadsworth.
  8. Schneider, W., Kron-Sperl, V., & Hünnerkopf, M. (2009). The development of young children’s memory strategies: Evidence from the Würzburg Longitudinal Memory Study. European Journal of Developmental Psychology, 6, 70-99.
  9. Berger, K. S. (2014). The developing person: Through the life span. Worth Publishers.
  10. Bruning, R. H., Schraw, G. J., Norby, M. M., & Ronning, R. R. (2004). Cognitive psychology and instruction. Pearson.
  11. Ennis, R. H. (1987). A taxonomy of critical thinking dispositions and abilities. In J. Baron & R. Sternberg (Eds.), Teaching thinking skills: Theory and practice (pp. 9-26). Freeman.

License

Icon for the Creative Commons Attribution 4.0 International License

Cognitive Development in Middle Childhood Copyright © by Stephanie Hazen and Celeste Mazur is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book