Biological Foundations of Human Development

What you’ll learn to do: explain the role of genetics in prenatal development

Graphic of person looking through magnifying glass at DNA

In this section, we will look at some of the ways in which heredity helps to shape the way we are. We will look at what happens genetically during conception and take a brief look at some genetic and chromosomal disorders. Before going into these topics, however, it is important to emphasize the interplay between heredity and the environment. Why are you the way you are? As you consider some of your traits (height, weight, personality, health, etc.), chances are, you can see the ways in which both heredity and environmental factors (such as lifestyle, diet, and so on) have contributed to these features.

Learning outcomes

  • Describe the genetic foundations of human development
  • Explain and identify types of genetic disorders
  • Describe chromosomal abnormalities
  • Describe prenatal testing
  • Describe the interaction between genetics and the environment
  • Compare monozygotic and dizygotic twins

Heredity and Chromosomes

female reproductive system diagram showing the vagina, cervix, uterus, ovaries, and fallopian tubes.
Figure 2. The Female Reproductive System.

Gametes

There are two types of sex cells or gametes involved in reproduction: the male gametes, or sperm, and female gametes, or ova. The male gametes are produced in the testes through a process called spermatogenesis, which begins at about 12 years of age. The female gametes, which are stored in the ovaries, are present at birth but are immature. Each ovary contains about 250,000 ova but only about 400 of these will become mature eggs (Mackon & Fauser, 2000; Rome, 1998). Beginning at puberty, one ovum ripens and is released about every 28 days, a process called oogenesis.

After the ovum or egg ripens and is released from the ovary, it is drawn into the fallopian tube and in 3 to 4 days, reaches the uterus. It is typically fertilized in the fallopian tube and continues its journey to the uterus. At ejaculation, millions of sperm are released into the vagina, but only a few reach the egg and typically, only one fertilizes the egg. Once a single sperm has entered the wall of the egg, the wall becomes hard and prevents other sperm from entering. After the sperm has entered the egg, the tail of the sperm breaks off and the head of the sperm, containing the genetic information from the father, unites with the nucleus of the egg. As a result, a new cell is formed. This cell, containing the combined genetic information from both parents, is referred to as a zygote.

watch it

Watch as one single sperm survives the long and treacherous journey to fertilize the mother’s egg.

Chromosomes

Normal human cells have 46 chromosomes (or 23 pairs). Gametes (sperm and egg cells) contain half the full set of chromosomes (23 chromosomes). Each gamete contains a different random combination of the genetic material. Chromosomes are long threadlike structures found in a cell nucleus that contain genetic material known as deoxyribonucleic acid (DNA). DNA is a helix-shaped molecule made up of nucleotide base pairs [adenine (A), guanine (G), cytosine (C), and thymine (T)]. In each chromosome, sequences of DNA make up genes that control or partially control a number of visible characteristics, known as traits, such as eye color, hair color, and so on. A single gene may have multiple possible variations or alleles. An allele is a specific version of a gene, one inherited from each biological parent. When someone has two copies of the same allele (same version of the gene), they are said to be homozygous for that allele. When someone has a two different alleles for a given gene, they are said to be heterozygous. So, a given gene may code for the trait of hair color, and the different alleles of that gene affect which hair color an individual has. The likelihood of having offspring that are genetically identical (and not twins) is one in trillions (Gould & Keeton, 1997).

DNA strand showing the double strands, with the base pairs adenine, thyamine, guanine, and cytonine between.
Figure 3. Deoxyribonucleic acid (DNA) is a helix-shaped molecule made up of nucleotide base pairs. Sequences of DNA make up genes.

Genotypes and Phenotypes

When a sperm and egg fuse, their 23 chromosomes pair up and create a zygote with 23 pairs of chromosomes. Therefore, each parent contributes half the genetic information carried by the offspring; the resulting physical characteristics of the offspring (called the phenotype) are determined by the interaction of genetic material supplied by the parents (called the genotype). A person’s genotype is the genetic makeup of that individual. Phenotype, on the other hand, refers to the individual’s inherited physical characteristics.

Look in the mirror. What do you see, your genotype or your phenotype? What determines whether or not genes are expressed? Actually, this is quite complicated. Some features follow the additive pattern which means that many different genes contribute to a final outcome. Height and skin tone are examples. In other cases, a gene might either be turned on or off depending on several factors, including the gene with which it is paired or the inherited epigenetic tags.

Link To learning

Visit the webpage “What are DNA and Genes?” from the University of Utah to better understand DNA and genes, then watch the video “What is Inheritance?” to learn how the genes from parents pass on genetic information to their children.

Determining the Sex of the Child

Twenty-two of those chromosomes from each parent are similar in length to a corresponding chromosome from the other parent. However, the remaining chromosome (the 23rd pair) looks like an X or a Y. Half of the male’s sperm contain a Y chromosome and half contain an X. All of the ova contain X chromosomes. If the child receives the combination of XY, the child will be genetically male. If it receives the XX combination, the child will be genetically female.

Many potential parents have a clear preference for having a boy or a girl and would like to determine the sex of the child. Through the years, a number of tips have been offered for the potential parents to maximize their chances for having either a son or daughter as they prefer. For example, it has been suggested that sperm which carry a Y chromosome are more fragile than those carrying an X. So, if a couple desires a male child, they can take measures to maximize the chance that the Y sperm reaches the egg. This involves having intercourse 48 hours after ovulation, which helps the Y sperm have a shorter journey to reach the egg, douching to create a more alkaline environment in the vagina, and having the female reach orgasm first so that sperm are not pushed out of the vagina during orgasm. Today, however, there is new technology available that makes it possible to isolate sperm containing either an X or a Y, depending on the preference, and use that sperm to fertilize a mother’s egg.

Genetic Variation and Inheritance

Genetic variation, the genetic difference between individuals, is what contributes to a species’ adaptation to its environment. In humans, genetic variation begins with an egg, several million sperm, and fertilization. The egg and the sperm each contain 23 chromosomes, which make up our genes. A single gene may have multiple possible variations or alleles (a specific version of a gene), resulting in a variety of combinations of inherited traits.

Genetic inheritance of traits for humans is based upon Gregor Mendel’s model of inheritance. For genes on an autosome (any chromosome other than a sex chromosome), the alleles and their associated traits are autosomal dominant or autosomal recessive. In this model, some genes are considered dominant because they will be expressed even when paired with a different version of the gene. Others, termed recessive, are only expressed in the absence of a dominant gene. Dominant traits include curly hair, facial dimples, normal vision, and dark hair. Recessive characteristics include red hair, pattern baldness, and nearsightedness. Most characteristics are not the result of a single gene pair; they are polygenic, meaning they are the result of several genes. Some characteristics which were once thought of as dominant-recessive, such as eye color, are now believed to be a result of the interaction between several genes (McKusick, 1998).  Most human traits, including intelligence and personality, are polygenic.

 

Watch It

This video demonstrates another example of the interaction of alleles using the Punnett square.

Link to Learning

Visit the Cystic Fibrosis Foundation to learn more about cystic fibrosis and learn how a mutation in DNA leads to the disease.

Genetic Disorders

A mutation is a sudden, permanent change in a gene. While some mutations may not be harmful, many mutations can be harmful or lethal. Some mutations occur during a person’s own life and only affect some cells. While they can impact the individual, these mutations are not passed down to the offspring. Other mutations are inherited. If a biological parent carries a genetic mutation in their egg or sperm, it can be passed to the offspring.

Most of the known genetic disorders are dominant gene-linked. Tourette’s Syndrome, a disorder which results in uncontrollable motor and vocal tics, is one example. Huntington’s Disease is a dominant gene linked disorder that damages the nervous system and results in progressive impairments in movement, behavior, and cognition. It develops in one’s 30s or 40s and is fatal.

Recessive gene disorders, such as cystic fibrosis and sickle-cell anemia, are less common. To inherit a recessive genetic disorder, a person must receive the recessive gene from both parents. If a person only has one recessive gene for the disease, the person would be a carrier of the disease. Recessive genetic disorders may actually claim more lives because they are less likely to be detected as people are unaware that they are carriers of the disease.

Sickle Cell Disease is a condition in which the red blood cells in the body are shaped like a sickle (like the letter C) and affect the ability of the blood to transport oxygen. Carriers may experience some effects, but do not have the full condition. Sickle Cell Disease is more common among African Americans. Cystic Fibrosis is a condition that affects breathing and digestion due to thick mucus building up in the body, especially the lungs and digestive system.

In this example, we will call the normal gene “N,” and the gene for cystic fibrosis “c.” The normal gene is dominant, which means that having the dominant allele either from one parent (Nc) or both parents (NN) will always result in the phenotype associated with the dominant allele. For example, cystic fibrosis is a recessive disease which means that an individual will only have the disease if they are homozygous for that recessive allele (cc).

Imagine that a woman who is a carrier of the cystic fibrosis gene has a child with a man who also is a carrier of the same disease. What are the odds that their child would inherit the disease? Both the woman and the man are heterozygous for this gene (Nc).  We can expect the offspring to have a 25% chance of having cystic fibrosis (cc), a 50% chance of being a carrier of the disease (Nc), and a 25% chance of receiving two normal copies of the gene (NN).

Punnett square showing traits from a mother and father. The mother is Nc and the Father is Nc, so there is a table with four combinations of NN, Nc, Nc, and cc
Figure 4. A Punnett square is a tool used to predict how genes will interact in the production of offspring. The capital N represents the dominant allele, and the lowercase c represents the recessive allele. In the example of the cystic fibrosis, where N is the normal gene (dominant allele), wherever a pair contains the dominant allele, N, you can expect a phenotype that does not express the disease. You can expect a cystic fibrosis phenotype only when there are two copies of the c (recessive allele) which contains the gene mutation that causes the disease.

 

Some genetic disorders are sex-linked; the defective gene is found on the X-chromosome. Males have only one X chromosome so are at greater risk for sex-linked disorders due to a recessive gene, such as hemophilia, color-blindness, and baldness. For females to be affected by the genetic defects, they need to inherit the recessive gene on both X-chromosomes, but if the defective gene is dominant, females can be equally at risk. Duchenne Muscular Dystrophy is a sex-linked (X-linked) genetic disorder that results in progressive muscle degeneration and weakness and shortened life expectancy.

Chromosomal Abnormalities

A chromosomal abnormality occurs when a child inherits too many or too few chromosomes. The most common cause of chromosomal abnormalities is the age of the mother. As the mother ages, the ovum is more likely to suffer abnormalities due to longer term exposure to environmental factors.

Another common cause of chromosomal abnormalities occurs because the gametes do not divide evenly when they are forming. Therefore, some cells have more than 46 chromosomes. In fact, it is believed that close to half of all zygotes have an odd number of chromosomes. Most of these zygotes fail to develop and are spontaneously aborted by the body. If the abnormal number occurs on pair # 21 or # 23, however, the individual may have certain physical or other abnormalities.

One of the most common chromosomal abnormalities is on pair # 21. Trisomy 21 or Down syndrome occurs when there are three rather than two 21st chromosomes. A person with Down syndrome has distinct facial features, intellectual disability, and oftentimes heart and gastrointestinal disorders. Symptoms vary from person to person and can range from mild to severe. With early intervention, the life expectancy of persons with Down syndrome has increased in recent years. Keep in mind that there is as much variation in people with Down Syndrome as in most populations and those differences need to be recognized and appreciated.

Watch It

Watch the following video clip about Down Syndrome from the National Down Syndrome Society:

//plugin.3playmedia.com/show?mf=3935250&p3sdk_version=1.10.1&p=20361&pt=375&video_id=TIcbFrt4F_c&video_target=tpm-plugin-74oscctq-TIcbFrt4F_c

When the chromosomal abnormality is on pair #23, the result is a sex-linked chromosomal abnormality. A person might have XXY, XYY, XXX, XO, or 45 or 47 chromosomes as a result. Two of the more common sex-linked chromosomal disorders are Turner syndrome and Klinefelter syndrome. Turner’s syndrome occurs in 1 of every 2,500 live female births (Carroll, 2007) when an ovum which lacks a chromosome is fertilized by a sperm with an X chromosome. The resulting zygote has an XO composition. Fertilization by a Y sperm is not viable. Turner syndrome affects cognitive functioning and sexual maturation. The external genitalia appear normal, but breasts and ovaries do not develop fully and the woman does not menstruate. Turner’s syndrome also results in short stature and other physical characteristics.  Klinefelter syndrome (XXY) occurs in 1 out of 700 live male births and results when an ovum containing an extra X chromosome is fertilized by a Y sperm. The Y chromosome stimulates the growth of male genitalia, but the additional X chromosome inhibits this development. An individual with Klinefelter syndrome has some breast development, infertility (this is the most common cause of infertility in males), and has low levels of testosterone.

Prenatal Testing

Prenatal testing consists of prenatal screening and prenatal diagnosis, which are aspects of prenatal care that focus on detecting problems with the pregnancy as early as possible. These may be anatomic and physiologic problems with the health of the zygote, embryo, or fetus, either before gestation even starts or as early in gestation as practical. Prenatal screening focuses on finding problems among a large population with affordable and noninvasive methods. The most common screening procedures are routine ultrasounds, blood tests, and blood pressure measurement. Prenatal diagnosis focuses on pursuing additional detailed information once a particular problem has been found, and can sometimes be more invasive.

Ultrasound is one of the main screening tests done in combination with blood tests. The ultrasound is a test in which sound waves are used to examine the fetus. Ultrasounds are used to check the fetus for defects or problems. It can also find out the age of the fetus, location of the placenta, fetal position, movement, breathing and heart rate, amount of amniotic fluid, and number of fetuses. Most women have at least one ultra sound during pregnancy, but if problems are noted, additional ultrasounds may be recommended.

Common prenatal diagnosis procedures include amniocentesis and chorionic villus sampling (CVS). Amniocentesis is a test that takes amniotic fluid from the uterus using a needle. The amniotic fluid contains some of the fetus’ cells, which can be tested for genetic disorders. Chorionic villus sampling takes a sample from the placenta for testing. Because of the miscarriage and fetal damage risks associated with amniocentesis and CVS procedures, many women prefer to first undergo screening so they can find out if the fetus’ risk of birth defects is high enough to justify the risks of invasive testing. Therefore, most physicians offer diagnostic testing to all their patients, with or without prior screening and let the patient decide.

There are three main purposes of prenatal diagnosis: (1) to enable timely medical or surgical treatment of a condition before or after birth, (2) to give the parents the chance to abort a fetus with the diagnosed condition, and (3) to give parents the chance to prepare psychologically, socially, financially, and medically for a baby with a health problem or disability, or for the likelihood of a stillbirth. Having this information in advance of birth means that healthcare staff, as well as parents, can better prepare themselves for the delivery of a child with a health problem. For example, Down Syndrome is associated with cardiac defects that may need intervention immediately upon birth.

 

watch it

Watch this video to learn more about prenatal testing and screening during pregnancy.

Behavioral Genetics

Behavioral genetics is the scientific study of the interaction of genetic and environmental contributions to behavior. When studying human behavior, behavioral geneticists often employ twin and adoption studies to research questions of interest. Twin studies compare the rates that a given behavioral trait is shared among identical and fraternal twins; adoption studies compare those rates among biologically related relatives and adopted relatives. Both approaches provide some insight into the relative importance of genes and environment for the expression of a given trait.

Nature or Nurture? Both!

For decades, scholars have carried on the “nature/nurture” debate. For any particular feature, those on the “nature” side would argue that heredity plays the most important role in bringing about that feature. Those on the “nurture” side would argue that one’s environment is most significant in shaping the way we are.

Most scholars agree that there is a constant interplay between the two forces. It is difficult to isolate the root of any single behavior as a result solely of nature or nurture, and most scholars believe that even determining the extent to which nature or nurture impacts a human feature is difficult to answer. In fact, almost all human features are polygenic (a result of many genes) and multifactorial (a result of many factors, both genetic and environmental). It is as if one’s genetic make-up sets up a range of possibilities, which may or may not be realized depending upon one’s environmental experiences. For instance, a person might be genetically predisposed to develop diabetes, but the person’s lifestyle may help bring about the disease.

 

Watch It

This video explains some of the research that gives insights into the complicated relationship between nature and nurture.

//plugin.3playmedia.com/show?mf=3935251&p3sdk_version=1.10.1&p=20361&pt=375&video_id=k50yMwEOWGU&video_target=tpm-plugin-6talm8be-k50yMwEOWGU

Adoption and Twin Studies

In typical human families, children’s biological parents raise them, so it is very difficult to know whether children act like their parents due to genetic (nature) or environmental (nurture) reasons. Nevertheless, despite our restrictions on setting up human-based experiments, we do see real-world examples of nature-nurture at work in the human sphere—though they only provide partial answers to our many questions. The easiest opportunity we have to observe this is the adoption study. In adoption studies, the child’s characteristics are compared to their biological parents and their adoptive parents to determine the contributions of genetic and environmental influences on development.

Monozygotic and Dizygotic Twins

Another option for observing nature and nurture in humans involves twin studies. To analyze nature–nurture using twins, we compare the similarity of monozygotic with dizygotic pairs or non-twin siblings. Monozygotic twins occur when a single zygote or fertilized egg splits apart in the first two weeks of development. The result is the creation of two separate but genetically identical offspring. About one-third of twins are monozygotic twins. Monozygotic twins are genetically nearly identical and they are always the same sex unless there has been a mutation during development.

Sometimes two eggs or ova are released and fertilized by two separate sperm. The result is dizygotic or fraternal twins. About two-thirds of twins are dizygotic. These two individuals share the same amount of genetic material as would any two children from the same mother and father. Older mothers are more likely to have dizygotic twins than are younger mothers and couples who use fertility drugs are also more likely to give birth to dizygotic twins. Consequently, there has been an increase in the number of fraternal twins in recent years (Bortolus et al., 1999). In vitro fertilization (IVF) techniques are more likely to create dizygotic twins. For IVF deliveries, there are nearly 21 pairs of twins for every 1,000.

In the uterus, a majority of monozygotic twins (60–70%) share the same placenta but have separate amniotic sacs. The placenta is a temporary organ that connects the developing fetus via the umbilical cord to the uterine wall to allow nutrient uptake, thermo-regulation, waste elimination, and gas exchange via the mother’s blood supply.  The amniotic sac (also called the bag of waters or the membranes), is a thin but tough transparent pair of membranes that hold a developing embryo (and later fetus) until shortly before birth. In 18–30% of monozygotic twins each fetus has a separate placenta and a separate amniotic sac. A small number (1–2%) of monozygotic twins share the same placenta and amniotic sac. Fraternal twins each have their own placenta and own amniotic sac.

Diagram showing the identical twins come from one egg dividing, then having a shared placenta. Fraternal twins come from separate eggs and have their own placentas.
Figure 7. Monozygotic twins come from a single zygote and generally share the same placenta, although some (18-30%) have separate placentas. Dizygotic twins come from two separately fertilized eggs and have their own placentas and amniotic sacs.

Monozygotic (one egg/identical) twins can be categorized into four types depending on the timing of the separation and duplication of cells. Various types of chorionicity and amniosity (how the baby’s sac looks) in monozygotic twins are a result of when the fertilized egg divides. This is known as placentation.

Diagram showing ways that twins are formed.
Figure 8. Various types of chorionicity and amniosity (how the baby’s sac looks) in monozygotic (one egg/identical) twins as a result of when the fertilized egg divides (Author Kevin Dufenbach)

Conjoined twins

Conjoined twins are monozygotic twins whose bodies are joined together during pregnancy. This occurs when the zygote starts to split after day 12 following fertilization and fails to separate completely. This condition occurs in about 1 in 50,000 human pregnancies. Most conjoined twins are now evaluated for surgery to attempt to separate them into separate functional bodies. The degree of difficulty rises if a vital organ or structure is shared between twins, such as the brain, heart or liver.

Vanishing twins

Researchers suspect that as many as 1 in 8 pregnancies start out as multiples, but only a single fetus is brought to full term because the other fetus has died very early in the pregnancy and has not been detected or recorded. Early obstetric ultrasonography exams sometimes reveal an “extra” fetus, which fails to develop and instead disintegrates and vanishes in the uterus. There are several reasons for the “vanishing” fetus, including it being embodied or absorbed by the other fetus, placenta or the mother. This is known as vanishing twin syndrome. Also, in an unknown proportion of cases, two zygotes may fuse soon after fertilization, resulting in a single chimeric embryo, and, later, fetus.

Twin Studies

Using the features of height and spoken language as examples, let’s take a look at how nature and nurture apply: identical twins, unsurprisingly, are almost perfectly similar for height. The heights of fraternal twins, however, are like any other sibling pairs: more similar to each other than to people from other families, but hardly identical. This contrast between twin types gives us a clue about the role genetics plays in determining height.

Identical twins Laurent and Larry Nicolas Bourgeois, the Les Twins.
Figure 9. Identical twins Laurent and Larry Nicolas Bourgeois, also known as the Les Twins, are internationally renowned dancers.

Now consider spoken language. If one identical twin speaks Spanish at home, the co-twin with whom she is raised almost certainly does too. But the same would be true for a pair of fraternal twins raised together. In terms of spoken language, fraternal twins are just as similar as identical twins, so it appears that the genetic match of identical twins doesn’t make much difference.

Twin and adoption studies are two instances of a much broader class of methods for observing nature-nurture called quantitative genetics, the scientific discipline in which similarities among individuals are analyzed based on how biologically related they are. We can do these studies with siblings and half-siblings, cousins, and twins who have been separated at birth and raised separately (Bouchard, Lykken, McGue, & Segal, 1990). Such twins are very rare and play a smaller role than is commonly believed in the science of nature–nurture, or with entire extended families (Plomin, DeFries, Knopik, & Neiderhiser, 2012).

It would be satisfying to be able to say that nature–nurture studies have given us conclusive and complete evidence about where traits come from, with some traits clearly resulting from genetics and others almost entirely from environmental factors, such as child-rearing practices and personal will; but that is not the case. Instead, everything has turned out to have some footing in genetics. The more genetically-related people are, the more similar they are—for everything: height, weight, intelligence, personality, mental illness, etc. Sure, it seems like common sense that some traits have a genetic bias. For example, adopted children resemble their biological parents even if they have never met them, and identical twins are more similar to each other than are fraternal twins. And while certain psychological traits, such as personality or mental illness (e.g., schizophrenia), seem reasonably influenced by genetics, it turns out that the same is true for political attitudes, how much television people watch (Plomin, Corley, DeFries, & Fulker, 1990), and whether or not they get divorced (McGue & Lykken, 1992).

Lastly, epigenetics studies modifications in DNA that affect gene expression and are passed on when the cells divide. Environmental factors, such as nutrition, stress, and teratogens are thought to change gene expression by switching genes on and off. These gene changes can then be inherited by daughter cells. This would explain why monozygotic or identical twins may increasingly differ in gene expression with age. For example, Fraga et al. (2005) found that when examining differences in DNA, a group of monozygotic twins were indistinguishable during the early years. However, when the twins were older there were significant discrepancies in their gene expression, most likely due to different experiences. These differences included susceptibilities to disease and a range of personal characteristics.

Glossary

adoption study: a behavior genetic research method that involves the comparison of adopted children to their adoptive and biological parents

allele: a specific version of a gene

amniotic sac: a fluid-filled sac that protects and contains the fetus in the uterus

behavioral genetics: the empirical science of how genes and environments combine to generate behavior

chromosome: a DNA molecule with part or all of the genetic material of an organism

deoxyribonucleic acid (DNA): a helix-shaped molecule made up of nucleotide base pairs

dizygotic: derived from two separate ova

epigenetics: the study of heritable phenotype changes that do not involve alterations in the DNA sequence; the prefix epi- means above

gamete: a male or female reproductive cell

genes: sequences of DNA that control or partially control a number of characteristics

genotype: the genetic makeup of an individual

heterozygous: a combination of alleles for a given gene

homozygous: having two copies of the same allele for a given gene

monozygotic: derived from a single ovum

mutation: a sudden permanent change in a gene

phenotype: the individual’s inherited physical characteristics

placenta: an organ that develops in the uterus during pregnancy to provide oxygen and nutrients to the fetus

prenatal diagnosis: an aspect of prenatal care focused on pursuing additional detailed information once a particular problem has been found

prenatal screening: an aspect of prenatal care focused on finding problems among a large population with affordable and noninvasive methods

quantitative genetics: scientific and mathematical methods for inferring genetic and environmental processes based on the degree of genetic and environmental similarity among organisms

theory of evolution by natural selection: the process by which organisms change over time so that those with genes and behaviors better suited for their environment will survive and reproduce, while those that are poorly suited for their environment will die off

twin studies: a behavior genetic research method that involves a comparison of the similarity of identical (monozygotic; MZ) and fraternal (dizygotic; DZ) twins

License

Icon for the Creative Commons Attribution 4.0 International License

Biological Foundations of Human Development Copyright © by Stephanie Hazen and Celeste Mazur is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book